Search for Heavy Resonance Decaying into bg
Final State in proton-proton Collision at $\sqrt{s} = 13$TeV
Zhixing Wang, Federico De Guio, Sung-Won Lee

Abstract

At LHC, the identification of jets originating from b quarks is important for searches for new physics and for measurement of b-quark production. Btagging Algorithms is a variety developed by CMS to select b-quark jets based on variables such as the impact parameters of the charged-particle tracks, the properties of reconstructed decay vertices, and the presence or absence of a lepton, or combinations thereof. CSVv2, which shorts for reconstructed decay vertices, and the presence or absence of a lepton, or combinations thereof. CSVv2 is a family of algorithms designed for jet and lepton identification and classification. It uses a combination of machine learning techniques to classify jets as b-tagged, c-tagged, or light flavors.

Introduction

The goal is to enhance the analysis sensitivity to final states with jets coming from the hadronization of b-quark by applying b-tagging requirement to one or both the leading 2 jets in the events. As for the inclusive analysis, the strategy consist in measuring the dijet mass spectrum and look for resonant structures in the spectrum which fitted with a smooth parametrization.

Techniques

Applying Deepjet medium tag

Let's take 2017 as an example

Result

The combined Observed and expected 95 %CL upper limits using Deepjet btag. The theoretical cross sections for $b\bar{b}$ are shown for comparison.

Conclusion

- Optimization of the DeepJet WP and functions to searching for b^* are performed.
- The Expected limit for the b^* model is between 1530~2255 GeV using the larger and equal than 1 DeepJet btag, and 1530~1980 observed limit
- No Evidence of a significant excess of events is found compared to the expectation of standard model